
sgfs Documentation
Release 0.1

Western X

March 03, 2016

Contents

1 Contents 2
1.1 Overview . 2
1.2 Command-line Tools . 4
1.3 SGFS API Reference . 5
1.4 Known Issues . 5

2 Low-Level APIs 7
2.1 Templates . 7
2.2 Context Graphs . 7
2.3 Schema Graphs . 7
2.4 Structure Graphs . 7
2.5 Path Caches . 7
2.6 Utilities . 7
2.7 Processors . 7

3 Indices and tables 8

i

sgfs Documentation, Release 0.1

This Python package is a translation layer between Shotgun entities and a file structure on disk. In general, its overar-
ching tasks are to:

• map Shotgun entities to their canonical path on disk;

• map paths on disk to the coresponding Shotgun entities;

• create new structures on disk;

• indentify existing structures on disk for use in above translation.

We also provide a number of Qt Widgets to assist in working with Shotgun:

Contents 1

http://www.shotgunsoftware.com/

CHAPTER 1

Contents

1.1 Overview

1.1.1 Tags

Once folders have been created, the mapping between those folders and the Shotgun entities from which they orig-
inated are maintained via tags. These tags exist within .sgfs.yml files within the top-level of the directory that
corresponds to the given entity.

Location

With the WesternX structure, the project tree (including tags) looks roughly like:

The_Awesome_Project/
.sgfs.yml # Project tag.
.sgfs-cache.sqlite # Reverse cache.
SEQ/

AA/
.sgfs.yml # "AA" Sequence tag.
AA_001_001/

.sgfs.yml # "AA_001_001" Shot tag.
Light/

.sgfs.yml # Tags for Tasks with step code "Light".
Assets/

Character/
Cow/

.sgfs.yml # "Cow" Asset tag.
Model/

.sgfs.yml # "Tags for Tasks with step code "Model".

Contents

The .sgfs.yml files are YAML documents containing a logical document for each tag. Those documents are
mappings including a timestamp, the entity for that tag, and other arbitrary metadata. The entities have been dumped
with all the information that was known about their lineage up to the project. For example, a tag for a shot may look
like:

created_at: 2012-10-23 18:27:24.312373
entity:

2

http://www.yaml.org/

sgfs Documentation, Release 0.1

code: RG_006_001
id: 5847
project:

id: 70
name: Super Buddies
type: Project
updated_at: 2012-09-17 22:40:23

sg_sequence:
code: RG
id: 107
name: RG
project:

id: 70
type: Project

type: Sequence
updated_at: 2012-10-23 19:29:58

type: Shot
updated_at: 2012-10-24 01:31:37

Rules

Usage of tags follows a few general rules:

• tags must contain an entity;

• tags may optionally contain metadata in addition to that entity;

• a directory may be tagged multiple times with different entities;

• if a directory is tagged more than once with the same entity, only the most recent tag will be returned and older
metadata will be lost (although older Shotgun data will be merged into the session if not outdated).

1.1.2 The Path Cache

While tags create a link from directories to their corresponding entities, the path cache maintains the links from
entities to directories in which they are tagged.

The path cache is implemented as a sqlite3 database located at .sgfs/cache.sqlite within each project, and
accessible via the PathCache API.

Since the data in the path cache and tags is redundant, the path cache should be treated as a derivative of the tags and
may be reconstructed from the tags at any time via the sgfs-relink command.

1.1.3 Caveats or Known Issues

• Projects must be tagged manually in order for other tools to be able to create structures within them (by default).
This is partially a technical restriction (for the creation of the path cache, but also for safety. Manual tagging is
done via the sgfs-tag command:

sgfs-tag Project 1234 path/to/project

1.1.4 Contexts, Schemas, and Structures

The Context, Schema, and Structure are three different (but related) directed acyclic graphs used in the con-
struction of file structures on disk.

1.1. Overview 3

http://www.sqlite.org/

sgfs Documentation, Release 0.1

A Context represents a set of Shotgun entities and their relationships.

A Schema represents a template for file structures, and is defined via template structures and YAML files describing
them.

A Structure is the specific directories and files that should exist for a set of entities, and allows for creation or
inspection of those structures. It is created by rendering Schema for a given Context.

1.2 Command-line Tools

A number of command line tools have been created to deal with common situations. When asked to specify an entity
to work on, they will generally accept the following forms:

• a path (e.g. . or SEQ/GB/GB_001_001);

• an entity type and ID (e.g. shot 1234);

• a sequence code (e.g. pv or GB);

• a shot code (e.g. gb_001 or PV_007_002);

• nothing, and it will use the current working directory.

1.2.1 Basics

sgfs-cd

Move your terminal to the given entity.

sgfs-open

Open the folder for the given entity.

sgfs-shotgun

Open the Shotgun page for the given entity.

1.2.2 Tags and Caches

sgfs-tag

$ sgfs-tag <entity_type> <entity_id> <path_to_folder>

sgfs-update

When operating with paths instead of entities, SGFS uses entity fields cached in the folder tags. We tend to only cache
fields that rarely change, but sometimes, e.g. when a shot or sequence is renamed, those fields need to be updated.

This command will rewrite the tags with up-to-date data:

1.2. Command-line Tools 4

sgfs Documentation, Release 0.1

Update the cached tag data for the current folder.
$ sgfs-update .

Update the cached tag data for every entity in the current folder.
$ sgfs-update -r .

sgfs-relink

When a folder is moved on disk, the one of the two links between Shotgun and that folder is broken, and you will not
be able to get a path from an entity any more.

The links must be recreated with this tool:

Relink the entity for the current folder.
$ sgfs-relink .

Relink all entities under this folder.
$ sgfs-relink -r .

Since this is a common situation after renaming shots or sequences, this tool can automatically call the updater on
paths that were relinked:

$ sgfs-relink -r --update .

1.3 SGFS API Reference

The SGFS object is the main entrypoint into most functions of this package. Generally, you construct a SGFS object
and use it to map entities to paths, get contexts from entities, and create structures.

Secondary classes such as Context are not created directly since they must remain connected to their original SGFS.

1.3.1 Entities

1.3.2 Templates

1.3.3 Contexts

1.3.4 Structure

1.3.5 Tags and Caches

1.4 Known Issues

Most of the issues with SGFS come up with invalid data in the tags that are placed in the file structure, either due to
information changing on Shotgun, or folders being moved/copied.

1.3. SGFS API Reference 5

sgfs Documentation, Release 0.1

1.4.1 Missing Links

Starting a Project

The folder for a project cannot be created from Shotgun (simply because we have deemed it special). You must
manually create it and then tag it via sgfs-tag:

$ sgfs-tag Project 1234 /Volumes/VFX/Projects/New_Project_Folder

(This example assumes the Shotgun ID of the project’s entity is 1234.)

Manually Copied Folders

Folders (or parents of folders) linked to a Shotgun entity should not be copied as a template for another structure. If
they are relinked (via sgfs-relink) then the copy may override the original as far as Shotgun is concerned.

To fix, delete all .sgfs.yml files in the duplicate folder:

$ find $copy -name .sgfs.yml -delete

relink the original:

$ sgfs-relink -r $original

and then create the folders for the copied entity from Shotgun itself.

1.4.2 Invalid Data

Quite a bit of data is cached in the tags, although much of it isn’t critical. Some of it, however, can lead to some very
strange Python exceptions.

Changing the pipeline step, name, or code of a task after the folders have been created has led to some strange
exceptions in the past. This is likely due to some of the older tools using these fields as part of some string-based path
construction.

Either put the value back to what it was, or use sgfs-update on the folders.

1.4. Known Issues 6

CHAPTER 2

Low-Level APIs

2.1 Templates

2.1.1 Bound Templates

BoundTemplate.template
The Template that is bound.

BoundTemplate.structure
The Structure that the template is bound to.

2.1.2 Match Results

2.2 Context Graphs

2.3 Schema Graphs

2.4 Structure Graphs

2.5 Path Caches

2.6 Utilities

2.7 Processors

7

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

8

Index

S
structure (BoundTemplate attribute), 7

T
template (BoundTemplate attribute), 7

9

	Contents
	Overview
	Command-line Tools
	SGFS API Reference
	Known Issues

	Low-Level APIs
	Templates
	Context Graphs
	Schema Graphs
	Structure Graphs
	Path Caches
	Utilities
	Processors

	Indices and tables

